Mark Scheme (Results)

January 2018
Pearson Edexcel International GCSE in Further Pure Mathematics (4PM0) Paper 02

edexcel 흧

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4PM0_02_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers may score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

Always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses 2A (or B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

- Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \quad \text { leading to } x=\ldots .
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.
3. Completing the square:

$$
x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration:

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required.
(Mark schemes may override this eg in a case of "prove or show....
\qquad

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question Number	Scheme	Marks
1 (a)	$192=\frac{\theta}{2} \times 12^{2} \Rightarrow \theta=\frac{8}{3}$ (radians) accept 2.67 or better	M1A1 (2)
(b)	$l=12 \times \frac{8}{3}=32(\mathrm{~cm})$	M1A1 (2)
ALT	Use $\quad A=\frac{1}{2} r l \quad 192=6 l \Rightarrow l=32 \quad$ M1A1	
		[4]
(a)		
M1	Use of correct formula. If the formula for use with degrees is used, must change to radians for the answer to gain this mark Correct answer	
A1		
(b)		
M1	Use of either correct (radian) formula with their angle from (a) or the degree formula Correct answer awrt 32	
A1		

Question Number	Scheme	Marks
4(a) (b)	$\begin{aligned} & b^{2}-4 a c>0 \quad p^{2}-4 \times 3 \times 4>0 \\ & \Rightarrow p^{2}>48 \Rightarrow \text { critical values are } p= \pm \sqrt{48} \quad(= \pm 4 \sqrt{3}) \end{aligned}$ So set of values; $p<-4 \sqrt{3}, p>4 \sqrt{3}$ (accept 3dp or better inc $\pm \sqrt{48}$) $\pm 6, \pm 5, \pm 4, \pm 3, \pm 2, \pm 1,0$	M1 dM1A1 ddM1A1 (5) B1 (1) [6]
(a) M1 dM1 A1 dM1 A1 (b) B1	For the first $\mathbf{3}$ marks accept an equation or any inequality sign. For the first $\mathbf{4}$ marks accept the use of x instead of p Use discriminant Solve to find the CVs Depends on the first M mark. Correct CVs, exact or (min) 3 dp Form 2 inequalities for the outside regions using their CVs ie $p<$ smaller CV and $p>$ larger CV Depends on both previous M marks Correct set of values Answer as shown.	

Question Number	Scheme	Marks
7(i)	$\frac{\left(8^{x}\right)^{x}}{32^{x}}=4 \Rightarrow \frac{2^{3 x^{2}}}{2^{5 x}}=2^{2} \Rightarrow 2^{\left(3 x^{2}-5 x\right)}=2^{2}$	M1A1
	$\Rightarrow 3 x^{2}-5 x=2 \Rightarrow(3 x+1)(x-2)=0$	M1
	$x=-\frac{1}{3}, 2$	A1 (4)
(ii)	$\log _{x} 64-\log _{x} 4=\log _{x}\left(\frac{64}{4}\right)=\log _{x} 16$	M1
	$\log _{x} 16=\frac{\log _{4} 16}{\log _{4} x}=\frac{2}{\log _{4} x}$	M1
	$3 \log _{4} x+\frac{2}{\log _{4} x}=5 \Rightarrow 3\left(\log _{4} x\right)^{2}+2=5 \log _{4} x$	M1
	$\Rightarrow 3\left(\log _{4} x\right)^{2}-5 \log _{4} x+2=0$	
	$\Rightarrow\left(3 \log _{4} x-2\right)\left(\log _{4} x-1\right)=0$	dM1
ALT (ii)	$\Rightarrow \log _{4} x=\frac{2}{3}, \log _{4} x=1$	A1
	$\Rightarrow x=4^{\frac{2}{3}}\left(=2^{\frac{4}{3}}=\sqrt[3]{16}\right)=2.5198421 \ldots \approx 2.52 \text { or better } x=4^{1}=4$	dM1A1 (7)
		[11]
	$\log _{x} 64-\log _{x} 4=\log _{x}\left(\frac{64}{4}\right)=\log _{x} 16=2 \log _{x} 4$	M1
	$\log _{4} x=\frac{\log _{x} x}{\log _{x} 4}=\frac{1}{\log _{x} 4}$	M1
	$2 \log _{x} 4+\frac{3}{\log _{x} 4}=5 \Rightarrow 2\left(\log _{x} 4\right)^{2}+2=5 \log _{x} 4$	M1
	$\Rightarrow 2\left(\log _{x} 4\right)^{2}-5 \log _{x} 4+3=0$	
	$\Rightarrow\left(2 \log _{x} 4-3\right)\left(\log _{x} 4-1\right)=0$	dM1
	$\Rightarrow \log _{x} 4=\frac{3}{2}, \log _{x} 4=1 \Rightarrow 4=x^{\frac{3}{2}}, 4=x^{1}$	A1
	$\Rightarrow x=4^{\frac{2}{3}}=(\sqrt[3]{16})=2.5198421 \ldots \approx 2.52 \text { or better, } \quad x=4^{1}=4$	$\begin{aligned} & \mathrm{dM} 1 \mathrm{~A} 1 \\ & (7) \end{aligned}$

Question Number	Scheme	Marks
(i)		
M1	Change all terms of equation to powers of 2 (or possibly 4)	
A1	Correct 2 term equation with powers of 2	
M1	Equate the powers in their equation and solve the resulting 3 term quadratic	
A1	Correct values for x (both needed)	
	Special Case: Using factor theorem:	
	Substitute $x=2$ and show correct M1A1M0A0	
	If (unlikely) same done with $x=-\frac{1}{3}$ - send to Review!	
(ii)		
	The work for the first 3 M marks may appear in a different order. Enter the marks in the order shown here.	
M1	Combine the two logs base x or combine the equivalent logs after changing base. Award for combining the 2 equivalent numbers after multiplying through by their denominators	
M1	Change all logs base x to logs base 4 (or all logs to the same base)	
M1	Obtain a 3 term quadratic, terms in any order.	
dM1	Solve their 3 term quadratic to $\log _{4} x=\ldots$ or $\log _{p} x=\ldots \quad$ Depends on all previous M marks	
A1	Two correct values for $\log _{4} x$ or $\log _{p} x$	
dM1	"Undo" their logs to get at least one value for x (not nec correct) Depends on all previous M marks.	
A1	Two correct values for x. Accept accurate answers or min 3 sf	
ALT		
M1	Combine the two logs base x	
M1	Change all log base 4 to log base x	
M1	Obtain a 3 term quadratic, terms in any order.	
dM1	Solve their 3 term quadratic to $\log _{x} 4=\ldots$ or $\log _{x} p=\ldots$ Depends on all previous M marks	
A1	Two correct values for $\log _{x} 4$ or $\log _{x} p$	
$\begin{gathered} \text { dM1 } \\ \text { A1 } \end{gathered}$	"Undo" their logs to get at least one value for $x \quad$ Depends on all previous M marks Two correct values for x	

Question Number	Scheme	Marks
(a) (i)M1	Obtain the quadratic factor by division or inspection	
M1 (A1 on	Factorise the quadratic factor	
e-PEN)		
A1cso (ii)A1	Correct given value for a	
(B1 on e-	Correct value for b	
	By Factor Theorem:	
	M1 Test $x=1$	
	M1 Test another value which is >1	
	A1 $a=1 \quad$ A1 $b=3$	
(b)		
M1	Differentiate and substitute $x=2$ to find the gradient of the tangent to C at P	
A1	Correct gradient of tangent	
B1	$y=-4$ seen explicitly or used in the equation of the tangent	
M1	Any complete method for the equation of the tangent at (2, their y).	
M1	Use of $y=m x+c$ must include an attempt at finding a value for c	
A1	Correct numbers in their (unsimplified) equation	
A1cso	Correct x coordinate of the point where the tangent crosses the x-axis. No errors seen	
ALT	for the last 3 marks:	
	Find the gradient of the line from P to $(-2,0) \quad$ M1 Any correct method; A1correct gradient All work correct and a conclusion. A1cso	
(c)		
M1	Using area $=\int$ curve - line or \int line -curve with their line equation limits are needed	
M1	Attempt to integrate the single function or two functions (ie all the integration needed) limits	
dM1	Substitute correct limits in their integrated function(s) Depends on both M marks	
A1	Correct final answer. Must be positive.	
ALT	By splitting the area	
M1	Suitable split eg as shown Limits are needed	
M1	Attempt all the nec integration (ignore limits) and area of triangle by integration or formula	
dM1	Substitute correct limits in their integrated function(s) Depends on both M marks	
A1	Correct final answer	

Question Number	Scheme	Marks
10(a)	$\frac{y--4}{-4-1}=\frac{x--6}{-6-4} \Rightarrow y+4=\frac{1}{2}(x+6) \quad \text { oe eg } y=\frac{1}{2} x-1$	M1A1 (2)
(b)	$\left(\frac{3 \times 4+2 \times-6}{5}, \frac{3 \times 1+2 \times-4}{5}\right) \Rightarrow(0,-1)$	M1A1 (2)
(c)	Gradient of perpendicular $=-2$ Allow all following work if x, y used instead of m, n $\begin{aligned} & -2=\frac{n--1}{m-0} \quad(\Rightarrow-2 m=n+1) \\ & (3 \sqrt{5})^{2}=(m-0)^{2}+(n--1)^{2} \Rightarrow 45=m^{2}+(n+1)^{2} \end{aligned}$	B1 B1ft
	$45=m^{2}+4 m^{2} \Rightarrow 45=5 m^{2} \Rightarrow m= \pm 3$ negative required $m=-3$	M1A1
	$\Rightarrow n=-2 m-1 \Rightarrow n=-2 \times-3-1=5$ coordinates are $(-3,5)$	A1 (5)
(d)(i)	$\begin{aligned} & R Q=\sqrt{(-13--3)^{2}+(0-5)^{2}}=5 \sqrt{5} \\ & A B=\sqrt{(4--6)^{2}+(1--4)^{2}}=5 \sqrt{5} \end{aligned}$	M1
	With conclusion	A1cso
(ii)	$\begin{aligned} & \left(\text { Gradient of } A B=\frac{1}{2}\right) \text { Gradient of } R Q=\frac{5-0}{-3--13}=\frac{1}{2} \\ & \text { With conclusion * } \end{aligned}$	M1 A1cso (4)
ALT	By vectors - combines both parts:	
	$\overrightarrow{A B}=10 \mathbf{i}+5 \mathbf{j}$ or equivalent column vector	M1
	$\overrightarrow{R Q}=10 \mathbf{i}+5 \mathbf{j}$ or equivalent column vector	M1
	So same length and parallel (provided both vectors are correct)	A1A1
(e)	Area is base \times height $A=3 \sqrt{5} \times 5 \sqrt{5}=75 \quad$ (units) ${ }^{2}$	M1A1 (2) [15]
ALT:	$A=\frac{1}{2}\left\|\begin{array}{ccccc} -3 & 4 & -6 & -13 & -3 \\ 5 & 1 & -4 & 0 & 5 \end{array}\right\|$	
	$=\frac{1}{2}[(-3-20)+(-16+6)+(0-52)-(65-0)]=-75 \Rightarrow 75$	

Question Number	Scheme ${ }^{\text {a }}$ Marks
(a)	
M1	Any complete method for obtaining an equation of l
A1	Correct equation in any form inc unsimplified
(b)	
M1	Obtaining at least one of the coords of P. Must be correct. Can be by formula or diagram.
A1	Both coords correct. NB: If both coords are just written down, award M1A1 if both correct; M0A0 otherwise
(c)	
B1	Correct gradient of the perpendicular
B1ft	Correct equation connecting m and n from equating their gradient to -2 Can be unsimplified. Follow through their gradient of the perpendicular but must be negative reciprocal of gradient of l
M1	Use Pythagoras (with + sign as shown oe)to find the length of $P Q$, equate this to $3 \sqrt{5}$ and solve to $m=\ldots$
A1	Correct value for $m \quad \pm 3$ allowed here
A1	Correct value for n Values do not have to be written in coordinate brackets. Only one final answer or this mark is lost.
(d)	
(i)M1	Use Pythagoras to find the length of $R Q$ or $A B$
A1cso	Lengths of both lines correct with working for each and a conclusion shown
(ii)M1	Find the gradient of $R Q$ Must show working
A1cso	Correct gradient of both lines and a conclusion shown
ALT	M1M1 one M mark for each vector correct or working shown but slip made A1A1 one A mark for each conclusion provided the vectors are correct.
(e)	
M1	Obtaining the area of $A B P Q$ by using the formula for the area of a parallelogram
A1	Correct area
ALT:	Use the "determinant" method.
M1	Formula must be correct ie $\frac{1}{2}$ needed, 5 pairs of coordinates with first and last the same,
A1	Correct area-must be positive.

